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Switched systems




Consider the following discrete-time switched system
x(k+1) = A(E(k)x(k),

where x € R" is the state vector, and the switching rule is unknown a priori.
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Consider the following discrete-time switched system
x(k+1) = A(E(k)x(k), (1)

where x € R" is the state vector, and the switching rule is unknown a priori. The
dynamic matrix can be written as

AER) = ) &A= E1(R)AL+ E2(R) Az + ... & (K) Ay, @)
i=1
and the indicator function is defined as

1, for A; (theith mode is active) )
Eilk) = Vi=1,...,0.

0, otherwise

Stability

How can we certify that system (1) is globally asymptotically stable?



The zero equilibrium of x(k + 1) = fr(x(k)) is globally uniformly asymptotically stable if
there is a function V : Z* x R" — R such that:

© V is a positive-definite function, decreasing along the trajectories, and radially
unbounded;

© AV(k,x(k)) =V(k +1,x(k + 1)) — V(k, x(k)) is negative definite along the
solutions of x(k + 1) = fi(x(k)).

One can say that the Lyapunov function is positive-definite, decreasing along the
trajectories, and radially unbounded if V(k,0) = 0, Vk > 0 and

B1llx()|* < V(k, x(k)) < B2 l|x(k)|> 3)

for all x(k) € R" and k > 0 with 1 and B, positive scalars.



Switched Lyapunov function® V (k, x(k)) = x(k)T P(£(k))x(k).

If there exist symmetric matrices Py, . .., Py, such that

P, ATP

1

>0, V(i,j)e ¥xJ7,
PA, P, (i, 7) (4)

where F = {1,...,v}, then, the Lyapunov function V (k, x(k)) = x(k)T P(&(k))x(k)
certify the stability of the switched system x(k + 1) = A(&(k))x (k).

1]. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and control synthesis for switched
systems: a switched Lyapunov function approach,” IEEE Transactions on Automatic Control, 2002.
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Switched Lyapunov function® V (k, x(k)) = x(k)T P(£(k))x(k).

If there exist symmetric matrices Py, . .., Py, such that

P, ATP

1

>0, V(i,j)e ¥xJ7,
PA, P, (i, 7) (4)

where F = {1,...,v}, then, the Lyapunov function V (k, x(k)) = x(k)T P(&(k))x(k)
certify the stability of the switched system x(k + 1) = A(&(k))x (k).

Idea of the proof:
AV)=V(k+1,x(k+1))-V(k,x(k)) <0
= x(k + 1)TP(E(k + 1)x(k + 1) — x(k)"P(E(k))x(k) < O
= (k)T (A(E(R))P(E(k + 1) A(E(K)) = P(E(K))x(k) < 0

1]. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and control synthesis for switched

systems: a switched Lyapunov function approach,” IEEE Transactions on Automatic Control, 2002.



Structured Lyapunov functions

By employing an augmented state vector in the Lyapunov function?

k1 x(k)
V) = x(k :+ 1) v x(k:+ 1)
x(k+N-1) x(k+N-1)

with
W = blkdiag(P1(&(k)), P2(E(k + 1)), ..., Pn(E(k + N — 1)),

we are able to derive necessary and sufficient conditions to certify the stability of
the switched system x(k + 1) = A(E(k))x(k).

2M. J. Lacerda and T. D. S. Gomide. “Stability and stabilisability of switched discrete-time
systems based on structured Lyapunov functions”. IET Control Theory & Applications, 2020.




Structured Lyapunov functions

The use of Lyapunov functions with non-monotonic terms?
Vi(x(k)) = x(k)T P;(&(k))x (k) can also lead to necessary and sufficient conditions* to
certify the stability of the switched system x(k + 1) = A(&(k))x(k).

N
ZVi(x(k)) >0, j=1,...N,
i=j

Vi(e(k +1)) = Vi(x(K)) + Va(x(k +2)) = Va(x(k)) + . . . + Vi (x(k + N)) = Ve (x(k)) < 0.

3A. A. Ahmadi and P. A. Parrilo. "Non-monotonic Lyapunov functions for stability of discrete
time nonlinear and switched systems." 47th IEEE Conference on Decision and Control, 2008.

*M. J. Lacerda and T. D. S. Gomide. “Stability and stabilisability of switched discrete-time
systems based on structured Lyapunov functions”. IET Control Theory & Applications, 2020.



Non-monotonic terms
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Fig. 1. Evolution of functions Vi (x;) (dotted green line), Va(x;) (dashed dotted blue line), V3(x;) (magenta dashed line) and the Lyapunov function W(x;) (straight red
line) - Example 2. (For interpretation of the references to color in this figure legend. the reader is referred to the web version of this article.)
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Control design

Consider the following discrete-time switched system
x(k +1) = A(E(K))x (k) + B(E(K))u(k), (5)

where x € R" is the state vector, and u € R"* is the control input. The switching
rule is unknown a priori, but it is considered to be available in real-time.



Control design

Consider the following discrete-time switched system
x(k +1) = A(E(K))x (k) + B(E(K))u(k), (5)

where x € R" is the state vector, and u € R"* is the control input. The switching
rule is unknown a priori, but it is considered to be available in real-time.

State-feedback control

Design a switching state-feedback control law
u(k) = K(&(k))x(k),
where K(E(k)) € R™*" stabilizes the closed-loop system

x(k +1) = (A(E(K)) + B(E(K)K(E(K)))x (k). (6)



If there exist symmetric matrices P; € R™" j=1,...,N,and matrices X(&(k)) € R™" and
Z(&(k)) € R™> also defined as in (2), such that the following inequalities are satisfied

N
> Py>0, j=2,...,N
m=j

[ -Py AuXi +ByZy 0 0
*  P1—Py-X; - X! : :
0 0 . A X+ B Zi 0 <0
: : Pn-1 =Py —Xiy, = X[ A Xiy + BiyZiy
0 0 e * Py — Xiy — X,{\,

V(l'1,l'2,...,l'N)€JXJ...j
————
N times

then, K;,, = Z;, Xi_,,,l are the state feedback control gains assuring that the closed loop system
x(k +1) = (A(E(k)) + B(E(k))K(E(K)))x (k) is asymptotically stable.
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Cyber-Physical systems




What is a cyber-physical system (CPS)?

Physical
>
process
Y
Actuator Sensor

Cyber
system
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( Applications }

—»( Energy )

—>( Manufacture )

—>( Infrastructure )

—>( Transportatmn)

—>< Military )
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Source: Data & Analytics Facility for National Infrastructure (DAFNI) to advance
UK infrastructure research.
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Virtual organization of a CPS

Security

Intelligent
Comms CPS 5

systems

Control
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Cyber attacks on CPS5
Replay
attacks

[ Cyber attacks ]7 Deception
attacks

DoS
attacks

°D. Ding, Q. L. Han, Y. Xiang, X. Ge, and X.-M. Zhang, “A survey on security control and attack

detection for industrial cyber-physical systems,” Neurocomputing, vol. 275, pp. 1674 — 1683, 2018.
16



Structure of a CPS under DoS attacks.
R e
—>| Actuator Plant Sensor

DoS attack DoS attack\N
Network Network

T
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Structure of a CPS under DoS attacks.

u(k)
—>| Actuator Plant Sensor
DoS attack DoS attackay
Network Network

Controller |«
\ ) x(k)

Problem

Does the designed controller ensure the stability of the closed-loop system under
the presence of DoS attacks?



Control design for CPS under attacks




Control for cyber-physical systems

x(k+1)=A(a)x(k) + B(a)u(k) (7)

where x € R" is the state vector, and u € R"* the control input.
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Control for cyber-physical systems

x(k+1)=A(a)x(k) + B(a)u(k) (7)

where x € R" is the state vector, and u € R"* the control input.

Scenario

© The matrices A(a) and B(a) belong to an uncertain domain.

[A(a) B(a)] -

14
i=1

(0% [Ai Bi] , a€EAN,

© V denotes the number of vertices of the polytope and A is the unit simplex

14
A:{aeRV:Zai:LaiZO}.
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Consider a discrete-time uncertain system with matrices

1 01 B 0
0 1-0.16|" 01k

where 0.1s71 < 6 < 10571, and « = 0.787rad V1572,

Disregarding the existence of attack the following state-feedback control gain
stabilizes the system

K = [—6.6145 _7.4944]

20
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Figure 1: Trajectories for the closed-loop states in the absence of attacks (upper), and
during the presence of DoS attack (lower).
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How can we design a control strategy capable of ensuring the stability of the
closed-loop uncertain system under the presence of DoS attacks?

© We need to construct a model that takes into account the presence of DoS
attacks. Different control strategies can be employed®:

o Hold strategy
o Zero strategy

o Packet of different controllers

© By using the Lyapunov theory, the design conditions will be written in the
form of LMIs.

© The designed controllers will be capable of ensuring the stability of the
closed-loop uncertain system under the presence of DoS attacks.

¢L. Schenato, "To Zero or to Hold Control Inputs With Lossy Links?," IEEE Transactions on
Automatic Control, 2009.
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Problem Formulation: DoS modelling

Assumption: The duration of the DoS attack is bounded by the maximum
number of consecutive control inputs samples that do not get to the actuator,

being this number denoted by N.

© Switching signal o (k) that assume valuesin M = {0,1,...,N}
© A new time scale k, that represents the time instant when the updated control
input reaches the actuator

kK +1 = kK + U(kK) + 1/ kO = O/ G(kK) = {1/21011}
ki ke +1 ke +2kc+3 ke +4

| S | S S | | S |
[ ey I ey k&Y I I >/ |

| |
[ |
k k+1k+2k+3k+4k+5k+6k+7 k+8 23




Problem Formulation: Hold Strategy

© The same control input u(k) = Kx(k) available to the actuator is successively
applied until the end of the attack (next successful transmission).

x(k+1) =A(a)x(k) + B(a)Kx(k),
x(k+2)=A(a)x(k +1) + B(a)Kx(k),
— x(k +2) = A(a)*x(k) + A(a)B(a)Kx(k) + B(a)Kx(k),

24



Problem Formulation: Hold Strategy

© The same control input u(k) = Kx(k) available to the actuator is successively
applied until the end of the attack (next successful transmission).

x(k+1) = A(a)x(k) + B(a)Kx(k),
x(k+2)=A(a)x(k +1) + B(a)Kx(k),
— x(k +2) = A(a)*x(k) + A(a)B(a)Kx(k) + B(a)Kx(k),

x(k +3) = A(a)x(k + 2) + B(aw)Kx(k),
— x(k +3) = A(a)>x(k) + A(a)*B(a)Kx(k) + A(a)B(a)Kx (k)

+ B(a)Kx(k).
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Problem Formulation: Zero Strategy

© The control input is set to zero until the end of the attack (next successful
transmission).

x(k+1) = A(a)x(k) + B(a)Kx(k),
x(k+2)=A(a)x(k+1) (8)
— x(k +2) = A(a)*x(k) + A(a)B(a)Kx(k),
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Problem Formulation: Zero Strategy

© The control input is set to zero until the end of the attack (next successful
transmission).

x(k+1) = A(a)x(k) + B(a)Kx(k),
x(k+2)=A(a)x(k+1) (8)
— x(k +2) = A(a)*x(k) + A(a)B(a)Kx(k),

x(k+3)=A(a)x(k +2),
— x(k +3) = A(a)>x(k) + A(a)*B(a)Kx(k).
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Problem Formulation: Packet Strategy

© Different control inputs u(k + i) = K; x(k) are available to the actuator before
an attack starts in k + 1. These inputs are successively applied until the end of
the attack (next successful transmission).

x(k+1) = A(a)x(k) + B(a)Kox(k),
x(k+2)=A(a)x(k +1) + B(a)Kqx(k),
— x(k +2) = A(a)*x(k) + A(a)B(a)Kox(k) + B(a)Kyx(k),
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Problem Formulation: Packet Strategy

© Different control inputs u(k + i) = K; x(k) are available to the actuator before
an attack starts in k + 1. These inputs are successively applied until the end of
the attack (next successful transmission).

x(k+1) = A(a)x(k) + B(a)Kox(k),
x(k+2)=A(a)x(k +1) + B(a)Kqx(k),
— x(k +2) = A(a)*x(k) + A(a)B(a)Kox(k) + B(a)Kyx(k),

x(k +3) = A(a)x(k + 2) + B(a)Kyx(k),
— x(k +3) = A(a)>x(k) + A(a)*B(a)Kox (k) + A(a)B(a)Kix(k)
+ B(a)Kyx(k).
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Packet-based approach?

Packet of controllers

u(k) Kox (k)

u(k +1) Kix(k)

Uuk) = , )

u(k ; N) KN;c(k)

is the package that gets to the actuator side every time that the communications
channels are free of the attack.

’P. S. P. Pessim and M. J. Lacerda, “State-Feedback Control for Cyber-Physical LPV Systems

Under DoS Attacks.” IEEE Control Systems Letters, 2021.
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Figure 2: “1” - presence of DoS attacks and “0” - abscence of DoS attacks. Sequence of
attacks (k) = {4,7,0,5,2,6,...}



Ui (k) =

Uy(ky) =
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Problem Formulation: Switched System

© Case 0: DoS-free case

x(k +1) = (A(a) + B(a)Ko) x(ky),
x(k +1) = Fo(a)x(ky)

© Case 1: The DoS attack occurs during one time-instant

x(ke +1) = (A(a)* + A(@)B(2)Kq + B(a)K1) x(ky),
x(ki +1) = Fi(a)x(ki) = (A(a)Fo(a) + B(a)K1) x(ky).

© Case 2: The DoS attack occurs during two time-instants

x(ke +1) = Fa(a)x(kie) = (Ala)F1(a) + B(@)K2) x(k).
30



Problem Formulation: Switched System

A generic formulation is given as follows

Fi(a) = A(@)Fi-1(a) + B(a)K;,

i=1,...,N,with Fo(a) = A(a) + B(a)Ky. These matrices are used to construct
the following switched system with N + 1 modes.

x(kK ar 1) = Fg(kk)x(kK).

Considering the indicator function & (ki) = [0 (ki) , ..., EN (ko))"

, otherwise

x(ke +1) = F(E(k)x(ky), a(icK):{é' ifolke) =i

with F(E(ke)) = &o(ke)Fo + E1(ki)F1 + -+ + En (ki) Fn. >



How to design the gain matrices?

Existence of a Lyapunov function V(xy, ), that is positive definite, and has its time

rate of change negative definite along the trajectories, i.e., AV (x, ) < 0.
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How to design the gain matrices?

Existence of a Lyapunov function V(xy, ), that is positive definite, and has its time

rate of change negative definite along the trajectories, i.e., AV (x, ) < 0.

Moreover, we need to employ

1. Change of variables.
2. Congruence transformation.
3. Schur complement.

. Linear Matrix Inequalities.

~
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Theorem

If there exist symmetric positive definite matrices Q; € R™ ", matrices X € R™" and
Z; € R™*" sych that

—Qi(a) *
v, 0(a) - X - XT <0, (10)
where ‘
W, = A(a)*1X + Z A(@)"B(Q)Zi—m, (11)
m=0

with A(a)’ =1,,i,j € M, M = {0,1,...,N}, then K; = Z; X! are the state-feedback
control gains that assure the closed-loop system (7) is asymptotically stable.
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Example: angular positioning system

Target*
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Example: angular positioning system N = 14

14

12

)

L L L L
0 500 1000 1500 2000
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Figure 3: Trajectories of the system considering the presence of attack N = 16 in the design

conditions (bottom) and disregarding the presence of attack in control design (top). 36



Problems addressed

© Output-feedback control for LPV systems®.
© Ho performance for LPV systems®.

© ¥, performance for uncertain systems?.

8P. S. P. Pessim and M. L. C. Peixoto and R. M. Palhares and M. J. Lacerda, “Static output-feedback
control for Cyber-physical LPV systems under DoS attacks.” Information Sciences, 2021.

°P. S. P. Pessim and M. J. Lacerda, “On the robustness of Cyber-physical LPV systems under DoS
attacks.” Journal of the Franklin Institute, 2022.

10P. M. Oliveira and J. M. Palma and M. J. Lacerda. “%, state-feedback control for discrete-time
cyber-physical uncertain systems under DoS attacks,” Applied Mathematics and Computation, 2022.

37



Extensions and future directions




A model that includes DoS attack+packet loss for control design™'.

P1

P(N+2)1

P(N+2)2

p2

1P. M. Oliveira and J. M. Palma and M. ]. Lacerda. “ Control Design for an Unreliable Markovian
Network Susceptible to Denial-of-Service Attacks”, IEEE Transactions on Circuits and Systems II:
Express Briefs, 2024.



Consider the same example with

A(a):[l 0.1 ] B:[o

4

0 1-0.16 0.1x

where 0.1s7! < § < 1057}, and x = 0.787rad "'V ~!s72. In this approach we need to
take into account the transition probability matrix.

(05 ¢ d 0 0 0]
04 2?2 2 0 0 0
005 005 0 09 0 0 0
w=1[005 0050 0 09 0 0], (12)
005 005 0 0 0 09 0
005 0050 0 0 0 09
05 05 0 0 0 0 0

where ¢ = [0.05 0.15] and d = [0.35 0.45]. 40
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Perspectives for future research

Secure control

© Safety for cyber-physical systems under attacks using control barrier function.

© Filter design for attack detection.
© Constrained control input such as saturation.
© Replay attacks and false data injection attacks.

© Hybrid model for the CPS under attack.
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Final remarks
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Emerging Methodologies

© Safety Critical systems

© Resilient cyber-physical systems
© Cyber-physical human systems
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© CPS present opportunities and new challenges for control design.

© Control theory can contribute to safety in CPS.
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Summary

© CPS present opportunities and new challenges for control design.

© Control theory can contribute to safety in CPS.

Thank you!

m.lacerda@londonmet.ac.uk
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